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SUPPLEMENTARY NOTE 1: BIC DESIGN THEORY: UNCOVERED PLATE

Let’s assume that we have an infinitely periodic waveguide with a bunch of holes on it. The acoustic field at any
position of the unit cell of the waveguide is

P (r) =
∑
G

(BGe
iqGz +AGe

−iqGz)eikG·r, (S1)

where G are the modes of the reciprocal lattice, qG =
√
ω2/c2 − |kG|2. No incident field will be considered, that

is to say, AG = 0, as we are interested in the proper modes of the system. Then, the acoustic pressure field and the
normal velocity field can be written

P (r) =
∑
G

BGe
iqGzeikGr (S2)

vn(r) =
∑
G

iqG
kbzb

BGe
iqGzeikGr, (S3)

being zb the acoustic impedance of the medium. Concerning the acoustic field inside the holes, only the main
resonance of each hole will be considered, and the boundaries with the solid material are considered rigid. Therefore,
the pressure field and the normal velocity field inside the hole are

Pα(r) = eikRαBα
cos (kb(z + Lα))

sin (kbLα)
(S4)

vnα(r) =
−eikRα

zb
Bα

sin (kb(z + Lα))

sin (kbLα)
. (S5)

Next, mode matching at z = 0 plane is applied in order to match modes from the waveguide and modes from
the boreholes (resonant cavities). Applying continuity to the integral of the pressure field in the area of a hole and
continuity of the velocity field in the unit cell [1], two equations are obtained:

∑
G

BGe
iGRαHαG = Bα cot (kbLα) (S6)

and

− iqG
kb

BG =
∑
β

fβe
−iGRβHβGBβ , (S7)
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where HαG = 1
Ωα

∫
Ωα
eikG(r−Rα)dΩα and fα = Ωα

ΩC
is the cavity’s filling fraction, with Ωc and Ωα being the areas

of the unit cell and the cavity α. After substituting BG coefficients from equation (S7) into equation (S6), we get a
system of equations such that:

∑
β

[δαβ cot (kbLα)− iχαβ ]Bβ = 0, (S8)

where χαβ is

χαβ =
∑
G

kb
qG

cot (qGLα)fβe
iGRαβHαGHβH . (S9)

HαG can be simplified by assuming that all the holes in the system have the same depth Lα and the same radius
Ra. Thus, HαG is no longer dependent on the resonator, as every resonator has the same geometric and physical
properties. Due to its circular section,

HG =
2

Ra|kG|
J1(Ra|kG|). (S10)

Therefore,

χαβ =
∑
G

4πkb
|kG|2qGΩc

J2
1 (|kG|Ra)eiGRαβ . (S11)

In the following, we want to have only one circle of resonators in our system. Thus, the limits of the unit cell will
tend to infinity, such that

lim
a→∞

1

Ωc

∑
G

f(k + G) =
1

(2π)2

∫ ∫
f(k)dk (S12)

The sum over the reciprocal modes G is now an integral over k. After changing to cylindrical coordinates and
applying addition therem, the following expression is obtained for χαβ

χαβ = 2

+∞∑
n=−∞

(−1)ne−2πiβn/Ne2πiαn/NIuncov(n), (S13)

where

Iuncov(n) =

∫ +∞

0

kb
qkk

J2
1 (kRa)J2

n(kR0)dk. (S14)

The integral term Iuncov(n) has both real and imaginary part. Due to the symmetry of both the cluster and the
operator, the following relation between scattering coefficients Bα can be applied [2, 3]:

Bα = e2πi`α/NB0, (S15)

with ` being the resonant index. The system of equations in equation S8 gets reduced to a single equation, decoupled
in two different conditions

cot (kbLα) = 2N(−1)`
∫ ∞
kb

kb
k|qk|

J2
1 (kRa)J2

` (kR0)dk (S16)
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0 =

∫ kb

0

kb
k|qk|

J2
1 (kRa)J2

` (kR0)dk. (S17)

Equation (S17) can not be satisfied, avoiding the possibility of having a real BIC for the uncovered plate. Never-
theless, at low frequency, the behaviour of the function inside the integral is governed by the term J2

` (kR0). Function
J2

1 (kRα) has stronger effect in the high frequency regime. A mode with good quality factor can be designed by
properly matching the frequency and the radius of the cluster to coincide with one of the zeros of J2

` (kR0). Then,
evaluating the integral term in equation (S16), a value for the depth of the holes can be obtained.

SUPPLEMENTARY NOTE 2: BIC DESIGN THEORY: COVERED PLATE

Starting from equation (S1), the wall at z = L is considered rigid, so that ∂P/∂z = 0:

BG = AGe
i2qGL. (S18)

Then, both pressure field and velocity field can be written as

P (r) =
∑
G

AG cos (qG(z − L))eiqGLeikG·r (S19)

and the normal velocity

vn(r) =
∑
G

−qG
kbZb

2AG sin (qG(z − L))eiqGLeikG·r. (S20)

Field inside the holes is equal to the one use for the previous case (equations S4 and S5), and the same mode
matching technique is applied, obtaining

∑
G

2AG cos (qGL)eiqGLeiGRαHαG = Bα cot (kbLα) (S21)

and

2qG
kb

AG sin (qGL)eiqGL = −
∑
β

Bβfβe
−iGRβHβG, (S22)

which, combined,

N∑
β=1

[δαβ cot (kbLα) + χαβ ]Bβ = 0, (S23)

where χαβ is, after simplification of HαG,

χαβ =
∑
G

kb
qG

cot (qGL)fβe
iGRαβ

4

R2
a|kG|2

J2
1 (Ra|kG|). (S24)

Repeating the same steps as for the uncovered case, the summation over G is transformed into an integral over k,
and further change of coordinate system and the application of the addition theorem gives the following expression
for χαβ .
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χαβ = 2

+∞∑
n=−∞

(−1)ne2πniα/Ne−2πniβ/NIcov(n), (S25)

where

Icov(n) =

∫ +∞

0

kb
qkk

cot (qkL)J2
n(kR0)J2

1 (kRa)dk. (S26)

In this occasion, Icov(n) is always real, as cot (ix) = −i coth (x). Thus, after applying condition (S15) to the system
in equation (S23), only one condition is obtained for the design of bound states in the continuum

− 1

2
cot (kbLα) =

∞∑
n=−∞

(−1)nIcov(n)

N∑
β=1

e2πiβ(`−n)/N , (S27)

where summation term
∑N
β=1 e

2πiβ(`−n)/N is equal to N if and only if n = `, and 0 otherwise. Finally,

− cot (kbLα) = 2N(−1)`Icov(`). (S28)

As cot (x)’s domain is R and the result of the integral term is a real number, a solution for the equation can always
be found, proving that a bound state in the continuum can be designed in the covered case.

The equations have been numerically implemented, and real values have been obtained for the geometrical param-
eters of the structure and the operating frequency of the BIC. The resulting eigenmode is depicted in Fig. 1 panel b
in the main document. The geometrical features of the structure are: L = 2.5 cm, Lα = 1.36 cm, R0 = 5.61 cm and
Ra = 5.9 mm. The frequency at which the mode is designed is 5 kHz, but it is obtained in simulations with a small
shift at 5010.9 Hz. Regarding the vertical planes, Supplementary Figure 1 shows the vertical planes of the waveguide
at different angles, where each plane is showing two of the resonators of the structure.

SUPPLEMENTARY NOTE 3: RESONANT IMPEDANCE MODEL FOR DRILLED HOLES IN A
WAVEGUIDE

Let us consider the geometry shown if Supplementary Figure 2, where we assume that propagation in the waveguide
is mainly dominated by the fundamental mode, which has a constant pressure level along the z direction. However,
inside the hole, the waveguide has a higher height, so that more modes are allowed then. Thus, for the multipolar
symmetry q, we will have that the continuity of the pressure field at r = a ,

AqJq(kba) +BqHq(kba) =

∞∑
n=0

Cnq Jq(kna) cos
nπ

L
z (S29)

while that of the particle velocity will be

AqJ
′
q(kba) +BqH

′
q(kba) =

∞∑
n=0

kb
kn
Cnq J

′
q(kna) cos

nπ

L
z (S30)

Applying mode matching theory we find the following system of equations

AqJq(kba) +BqHq(kba) =

∞∑
n=0

Cnq Jq(kna) sinc (
nπ

L+ Lα
L) (S31)

(
AqJ

′
q(kba) +BqH

′
q(kba)

)
L sinc (

nπ

L+ Lα
L) =

kb
kn
Cnq J

′
q(kna)

1

2
(L+ Lα) (S32)
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Supplementary Figure 1: Vertical section of the BIC mode at different angles.

Supplementary Figure 2: Illustration of the geometry for the impedance computation.

which can be cast as

AqJq(kba) +BqHq(kba) = Zq
(
AqJ

′
q(kba) +BqH

′
q(kba)

)
(S33)

where

Zq =

∞∑
n=0

kn
kb

Jq(kna)

J ′q(kna)

2L

L+ Lα
sinc2(

nπ

L+ Lα
L) (S34)

as we see, the response of the hole is that of a resonant impedance. Following [4], for long wavelengths relative to
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the radius of the hole only the terms q = 0,±1 are relevant, and the ones who define the effective behaviour of the
inclusion. Supplementary Figure 3 shows Zq for q = 0, 1, showing the resonant behaviour within the frequency range
of interest.

Supplementary Figure 3: Impedance evolution for q = 0 and q = 1 given the following geometrical configuration;
R0 = 5.61 cm, L = 2.5 cm, Lα = 1.36 cm and Ra = 6 mm.
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SUPPLEMENTARY NOTE 4: EXPERIMENTAL SETUP

Supplementary Figure 4 shows a picture of the experimental setup, being Fig. 1 panel a in the main document a
schematic section of it. In the picture, the acoustic waveguide is completely seen thanks to the transparent top glass
cover.

Supplementary Figure 4: Photography of the experimental setup.

The MEMs microphone is introduced inside the waveguide and attached to the top cover by means of a magnet.
On the other side of the top cover (i.e., the exterior of the system), another magnet glued to a XYZ scanning system
drives the movement of the microphone. The glass cover is thin enough to allow both magnets to interact. Moreover,
the scanning is performed such that the possible mismatch of position between the scan and the microphone gets
compensated. The excitation system cannot be seen in the photo. Nevertheless, the four throughout holes can be seen
inside the circular cluster, and the position of the loudspeakers is right on the bottom of the alumina plate facing the
passing holes. The foam is surrounding the structure in order to avoid reflections coming from the change of acoustic
impedance at the edges of the waveguide, even if we assume that most of the energy will remain confined in the inner
part of the cluster.

The excitation signal was a Gaussian pulse that covered a frequency range around 5 kHz. Therefore, not only the
BIC could be excited, but other resonances with the same symmetry as the excitation system can be excited. This is
the case for the one shown in Supplementary Figure 5. This resonance is found in the eigenmode analysis of Comsol
with a quality factor of 4.12. In the experimental results, the resonance is hidden by the BIC, however if we analyse
the spectra excited, we will be able to find the same scattering field as was expected by the eigenmodes. By taking a
look at the line y = 0, we can realize that there is a good agreement between simulation and experiment.
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Supplementary Figure 5: Resonant mode measured in the structure. Panels b and c show the BIC normalized real
pressure field both in simulation (b) and in experiment (c). Panel d depicts the normalized absolute pressure field

for the line y = 0.

SUPPLEMENTARY NOTE 5: EXPERIMENTAL MEASUREMENTS UNCOVERED PLATE

Experimental measurements with the uncovered plate have been performed. The results are summarized in figures 6
and 7. Supplementary Figure 6 panel a shows an illustration of the geometry of the plate. The geometrical parameters
have been stated in the main text: R0 = 5.6cm, Rα = 5.9mm and Lα = 1.35cm. Panels b and c show the energy
distribution of the ` = 2 mode both for experiment and simulation respectively. Red dot in panel b indicates the
spatial position at which temporal measurements have been performed and later shown in Supplementary Figure 7.
The mode shape has been normalized in both cases with respect to the maximum value found for the mode. Finally,
panel d depicts the normalized absolute pressure field for the line with y = 0. Even if there is a good agreement
between experiment and simulation, the result is not as good as the one shown in the main article for the covered
case.

Supplementary Figure 7 shows the analysis of the uncovered plate for a temporal measurement performed at the red
point in Supplementary Figure 6 panel b. Panel a gives the temporal signal and its envelope, both for the scattered
(blue) and the incident field (red). Compared to the same figure shown for the covered case in the main article, the
tail of the scattered field is much shorter, indicating that there is no high-quality resonance present in the structure.
Furthermore, the scattered signal gets completely masked by the incident signal, while in the main article one can see
a field enhancement for the scattered field. Panel b shows the spectral content of both the incident and the scattered
field. Both fields have been normalized for the sake of having a better visualization. It can be seen that the scattered
field has its peak at the mode frequency. Even though, compared to the spectral response with the covered plate, the
resonance is really wide. Panel c shows the ratio between the scattered spectrum and the incident one. The peak for
this ratio is found at the mode frequency ∼ 5015Hz. Once again, this result differs from the one found in the main
article for the covered case: there is no ratio higher than one, indicating that there is no field enhancement at any
frequency, while the covered plate showed a huge enhancement near the mode frequency.
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Supplementary Figure 6: Designed plate and performance. Panel a shows an illustration of a section of the plate,
with the input channels used for the external excitation. Panels b and c show the real pressure field of the mode
both in experiment (b) and in simulation (c). Panel d depicts the normalized absolute pressure field for the line

y = 0, showing good agreement between simulation and experiment.

Supplementary Figure 7: Experimental results from the uncovered ` = 2 designed plate. Panel a shows the incident
and scattered signal and envelope at a given position (x = 0, y = 35mm, z = 22mm). Panel b shows the normalized
spectrum for both the incident and the scattered field. Panel c shows the ratio between the scattered spectrum and

the incident one in the experiment.
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